A MapReduce-based rotation forest classifier for epileptic seizure prediction

نویسندگان

  • Samed Jukic
  • Abdulhamit Subasi
چکیده

In this era, big data applications including biomedical are becoming attractive as the data generation and storage is increased in the last years. The big data processing to extract knowledge becomes challenging since the data mining techniques are not adapted to the new requirements. In this study, we analyse the EEG signals for epileptic seizure detection in the big data scenario using Rotation Forest classifier. Specifically, MSPCA is used for denoising, WPD is used for feature extraction and Rotation Forest is used for classification in a MapReduce framework to correctly predict the epileptic seizure. This paper presents a MapReduce-based distributed ensemble algorithm for epileptic seizure prediction and trains a Rotation Forest on each dataset in parallel using a cluster of computers. The results of MapReduce based Rotation Forest show that the proposed framework reduces the training time significantly while accomplishing a high level of performance in classifications. Keywords— Electroencephalogram (EEG); Epileptic Seizure prediction; Multi-scale Principal Component Analysis (MSPCA); Wavelet Packet Decomposition (WPD); Rotation Forest; Hadoop; Mapreduce.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier

Analysis of electroencephalogram (EEG) signal is crucial due to its non-stationary characteristics, which could lead the way to proper detection method for the treatment of patients with neurological abnormalities, especially for epilepsy. The performance of EEG-based epileptic seizure detection relies largely on the quality of selected features from an EEG data that characterize seizure activi...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Optimal preictal period in seizure prediction

A statistical method for finding the optimal preictal period to be used in epileptic seizure prediction algorithms is presented. As supervised machine learning methods need labeled training samples, the adequate selection of preictal period plays a key role in the training of an efficient classifier employed in seizure prediction. The proposed method uses amplitude distribution histograms of a ...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.06071  شماره 

صفحات  -

تاریخ انتشار 2017